

Zerø-Drift, High-Voltage,

Programmable Gain Instrumentation Amplifier

Check for Samples: PGA281

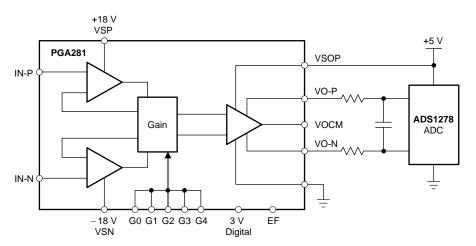
FEATURES

www.ti.com

- Wide Input Range: ±15.5 V at ±18 V Supply
- Binary Gain Steps: 128 V/V to 1/8 V/V
- Additional Scaling Factor: 1 V/V and 1% V/V
- Low Offset Voltage: 3 µV at G = 128
- Near-Zero Long-Term Drift of Offset Voltage
- Near-Zero Gain Drift: 0.5 ppm/°C
- Excellent Linearity: 1.5 ppm
- Excellent CMRR: 140 dB
- High Input Impedance
- Very Low 1/f Noise
- Differential Signal Output
- Overload Detection
- TSSOP-16 Package

APPLICATIONS

- High-Precision Signal Instrumentation
- Multiplexed Data Acquisition
- High-Voltage Analog Input Amplifiers
- Universal Industrial Analog Inputs


DESCRIPTION

The PGA281 is a high-precision instrumentation amplifier with digitally-controllable gain and signalintegrity test capability. This device offers low offset voltage, near-zero offset and gain drift, excellent linearity, and nearly no 1/f noise, with superior common-mode and supply rejection to support highresolution, precision measurement. The 36-V supply capability and wide, high-impedance input range comply with requirements for universal signal measurement.

The PGA281 is available in a TSSOP-16 package and is specified over a temperature range of -40° C to $+105^{\circ}$ C.

RELATED PRODUCTS

REEATEDTRODOOTO	
FEATURES	PRODUCT
23-bit resolution, $\Delta\Sigma$ analog-to-digital converter	ADS1259
Chopper-stabilized instrumentation amplifier, RR I/O, 5-V single supply	INA333
High-precision PGA, G = 1, 10, 100, and 1000	PGA204
High-precision PGA, JFET input, G = 1, 2, 4, and 8	PGA206

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCT PREVIEW

SBOS664 - MARCH 2013

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE INFORMATION ⁽¹⁾						
PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	PACKAGE MARKING			
PGA281	TSSOP-16	PW	PGA281A			

(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Over operating free-air temperature range, unless otherwise noted.

		PGA281	UNIT	
0	VSN to VSP	40	V	
Supply voltage	GND to VSOP, and GND to DVDD	6	V	
Signal input termi	nals, voltage ⁽²⁾	VSN – 0.5 to VSP + 0.5	V	
Signal input termi	nals, current ⁽²⁾	±10	mA	
Output short-circu	it ⁽³⁾	Continuous		
Operating temperating	ature	–55 to +140	°C	
Storage temperate	ure	-65 to +150	°C	
Junction temperature		+150	°C	
Electrostatic discharge (ESD) ratings	Human body model (HBM)	2000	V	

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) Terminals are diode-clamped to the power-supply (VON and VOP) rails. Signals that can swing more than 0.5 V beyond the supply rails must be current-limited.

(3) Short-circuit to GND or VSOP, respectively, GND or DVDD.

THERMAL INFORMATION

		PGA281	
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	UNITS
		16 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	TBD	
θ _{JCtop}	Junction-to-case (top) thermal resistance	TBD	
θ_{JB}	Junction-to-board thermal resistance	TBD	°C/W
ΨJT	Junction-to-top characterization parameter	TBD	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	TBD	
θ _{JCbot}	Junction-to-case (bottom) thermal resistance	TBD	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SBOS664-MARCH 2013

PGA281

www.ti.com

ELECTRICAL CHARACTERISTICS

At $T_A = +25^{\circ}$ C, VSP = +15 V, VSN = -15 V, GND = 0 V, VSOP = 5 V, DVDD = +3 V, $R_L = 2.5 \text{ k}\Omega$ to VSOP / 2 = VOCM, G = 1 V/V, $V_{CM} = 0$ V, and differential input and output, unless otherwise noted.

				PGA281		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT		+	- <u>!</u>			
.,	O(() DTI(1)	Gain = 1 V/V or 1.375 V/V		±50	±250	μV
Vos	Offset voltage, RTI ⁽¹⁾	Gain = 128 V/V		±3	±15	μV
dV _{OS} /dT	···· T -···· (2)	Gain = 1 V/V, $T_A = -40^{\circ}C$ to +105°C		±0.2	±0.6	µV/°C
av _{OS} /ai	vs Temperature ⁽²⁾	Gain = 128 V/V, $T_A = -40^{\circ}C$ to +105°C		±0.03	±0.17	µV/°C
PSR	vs Power supply, RTI	VSP – VSN = 10 V and 36 V, gain = 1 V/V, 128 V/V		±0.3	±3	μV/V
	Long-term stability ⁽³⁾	Gain = 128 V/V		3.5		nV/month
	Input impedance	Single-ended and differential		>1		GΩ
	Input capacitance	Single-ended (SE)		12		pF
	Input voltage range	Gain = 1 V/V, gain = 128 V/V T _A = -40°C to +105°C	(VSN) + 2.5		(VSP) – 2.5	V
		Gain = 1 V/V		±0.3	±3	μV/V
CMR	Common-mode rejection, RTI	Gain = 128 V/V		±0.08	±0.8	μV/V
		Gain = 128 V/V, $T_A = -40^{\circ}C$ to +105°C		±0.1	±1.5	μV/V
SINGLE-	ENDED OUTPUT CONNECTION (4)					
V _{os} C	Offset voltage, RTI, SE out	Gain = 1 V/V, 1.375 V/V, SE		±120		μV
		Gain = 128 V/V, SE		±3		μV
-1) / /-I T		Gain = 1 V/V, SE, $T_A = -40^{\circ}C$ to +105°C		0.6		µV/°C
dV _{OS} /dT	vs Temperature, SE out	Gain = 64 V/V, SE, $T_A = -40^{\circ}C$ to +105°C		0.05		µV/°C
INPUT B	IAS CURRENT ⁽⁵⁾					
		Gain = 1 V/V		±0.3	±1	nA
I _B	Bias current	Gain = 128 V/V		±0.8	±2	nA
.в		Gain = 1 V/V, gain = 128 V/V T _A = -40° C to $+105^{\circ}$ C		±0.6	±2	nA
		Gain = 1 V/V, gain = 128 V/V		±0.1	±0.5	nA
I _{OS}	Offset current	Gain = 1 V/V, gain = 128 V/V T _A = -40° C to $+105^{\circ}$ C		±0.9	±2	nA
NOISE						
		f = 0.01 Hz to 10 Hz, $R_S = 0 \Omega$, gain = 128 V/V		420		nV _{PP}
0	Voltago poiso PTI: target	f = 1 kHz, $R_S = 0 \Omega$, gain = 128 V/V		22		nV/√Hz
e _{NI}	Voltage noise, RTI; target	f = 0.01 Hz to 10 Hz, $R_S = 0 \Omega$, gain = 1 V/V		4.5		μV _{PP}
		f = 1 kHz, $R_S = 0 \Omega$, gain = 1 V/V		240		nV/√Hz
	Current noise, RTI	f = 0.01 Hz to 10 Hz, R_{S} = 10 MΩ, gain = 128 V/V		1.7		рА _{РР}
I _N		f = 1 kHz, R_S = 10 M Ω , gain = 128 V/V		90		fA/√Hz

(1) RTI: Referred to input.

(2) Specified by design; not production tested.

(3) 300-hour life test at +150°C demonstrated randomly distributed variation in the range of measurement limits.

(4) For single-ended (SE) output mode, see TBD section and typical characteristic graphs; signal between VOP and VOCM.

(4) For single-ended (SE) output mode, see TBD sections
 (5) See TBD section and typical characteristic graphs.

SBOS664-MARCH 2013

ELECTRICAL CHARACTERISTICS (continued)

At T_A = +25°C, VSP = +15 V, VSN = -15 V, GND = 0 V, VSOP = 5 V, DVDD = +3 V, R_L = 2.5 kΩ to VSOP / 2 = VOCM, G = 1 V/V, $V_{CM} = 0 V$, and differential input and output, unless otherwise noted.

			PGA281			
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
GAIN (O	utput Swing = ±4.5 V ⁽⁶⁾)		•			
	Range of input gain		1/8		128	V/V
	Output gain			1 or 13%		V/V
		All gains		±0.03%	±0.15%	
	Gain error, all binary steps	T_{A} = -40°C to +105°C, no load, all gains except gain = 128 V/V $^{(7)}$ $^{(8)}$		-0.5	±2	ppm/°C
		$T_A = -40^{\circ}$ C to +105°C, no load, gain = 128 V/V ⁽⁷⁾⁽⁸⁾		-1	±3	ppm/°C
	Gain step matching ⁽⁹⁾ (gain to gain)	No load, all gains		See TBD		
	Newline exits	No load, all gains ⁽¹⁰⁾		1.5	10	ppm
	Nonlinearity	No load, all gains, $T_A = -40^{\circ}C$ to $+105^{\circ}C^{(7)}$		3		ppm
OUTPUT	-					
	Voltage Output Swing from Rail ⁽⁹⁾	VSOP = 5 V, load current 2 mA $T_A = -40^{\circ}$ C to +105°C		40	100	mV
		VSOP = 2.7 V, load current 1.5 mA $T_A = -40^{\circ}$ C to +105°C			100	mV
	Capacitive load drive			500		pF
I _{SC}	Short-circuit current	To VSOP / 2, gain = 1.375 V/V	7	15	25	mA
	Output Resistance	Both VOP and VON outputs		200		mΩ
VOCM						
	Voltage range for VOCM	VSP – 2 V > VOCM, $T_A = -40^{\circ}C$ to +105°C	(GND) + 0.1	(\	/SOP) – 0.1	V
I _{B(VOCM)}	Bias current into VOCM			3	100	nA
	VOCM input resistance			1		GΩ
FREQUE	NCY RESPONSE					
GBP	Gain bandwidth product ⁽⁹⁾	Gain > 4 V/V		6		MHz
		Gain = 1 V/V, C _L = 100 pF		1		V/µs
SR	Slew rate ⁽⁹⁾ , 4 V_{PP} output step	Gain = 8 V/V, C _L = 100 pF		2		V/µs
		Gain = 128 V/V, C _L = 100 pF		1		V/µs
		To 0.01%, gain = 8 V/V, V_0 = 8- V_{PP} step		20		μs
	Settling time ⁽⁹⁾	To 0.001%, gain = 8 V/V, V _O = 8-V _{PP} step		30		μs
t _S		To 0.01%, gain = 128 V/V, V _O = 8-V _{PP} step		40		μs
		To 0.001%, gain = 128 V/V, V _O = 8-V _{PP} step		40		μs
	Overload recovery, input ⁽⁹⁾	0.5 V over supply, gain = 1/8 V/V to 128 V/V		8		μs
	Overload recovery, output ⁽⁹⁾	±5.5-V _{PP} input, gain = 1 V/V		6		μs

Gains smaller than $\frac{1}{2}$ are measured with smaller output swing. Specified by design; not production tested. (6)

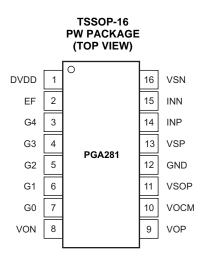
(7)

(8) See TBD for typical gain error drift of various gain settings.
(9) See TBD section and typical characteristic graphs.

(10) Only gain = 1 is production tested.

ELECTRICAL CHARACTERISTICS (continued)

At $T_A = +25^{\circ}$ C, VSP = +15 V, VSN = -15 V, GND = 0 V, VSOP = 5 V, DVDD = +3 V, $R_L = 2.5 \text{ k}\Omega$ to VSOP / 2 = VOCM, G = 1 V/V, $V_{CM} = 0$ V, and differential input and output, unless otherwise noted.


			PGA281				
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
DIGITAL	I/O (Supply = 2.7 V to 5.5 V)	•	<u>.</u>				
	Input (logic low threshold)		0		0.2(DVDD)	V	
	Input (logic high threshold)		0.8(DVDD)		DVDD	V	
	Output (logic low)	I _{OUT} = 4 mA, sink			0.7	V	
	Output (logic high)	I _{OUT} = 2 mA, source	DVDD - 0.5			V	
POWER	SUPPLY: Input Stage (VSN – VSP)						
	Specified Voltage Range	$T_A = -40^{\circ}C \text{ to } +105^{\circ}C$	10		36	V	
	Operating voltage range		10		38	V	
I _{Q(VSP)}	Quiescent current, VSP pin	$T_{A} = -40^{\circ}C \text{ to } +105^{\circ}C$		2.4	3	mA	
I _{Q(VSN)}	Quiescent current, VSN pin	$T_{A} = -40^{\circ}C \text{ to } +105^{\circ}C$		2.1	3	mA	
POWER	SUPPLY: Output Stage (VSOP – GND)					
	Specified Voltage Range	VSP − 1.5 V ≥ VSOP, $T_A = -40^{\circ}C$ to +105°C	2.7		5.5	V	
	Voltage range for VSOP, upper limit	(VSP - 2 V) > VOCM, (VSP - 5 V) > GND		(VSP)		V	
	Voltage range for GND	(VSP – 2 V) > VOCM, VSP ≥ VSOP	(VSN)		(VSP) – 5	V	
I _{Q(VSOP)}	Quiescent current, VSOP pin	$T_{A} = -40^{\circ}C \text{ to } +105^{\circ}C$		0.75	1	mA	
POWER	SUPPLY: Digital (DVDD – GND)						
	Specified voltage range	$T_{A} = -40^{\circ}C \text{ to } +105^{\circ}C$	2.7		5.5	V	
	Voltage range for DVDD, upper limit			(VSP) – 1		V	
	Voltage range for GND, lower limit			(VSN)		V	
I _{Q(DVDD)}	Quiescent current ⁽¹¹⁾	Static condition, no external load, DVDD = 3 V, $T_A = -40^{\circ}C$ to +105°C		0.07	0.13	mA	
TEMPER	ATURE	·					
	Specified range		-40		+105	°C	
	Operating range		-55		+140	°C	

(11) See TBD section and typical characteristic graphs.

SBOS664-MARCH 2013

SBOS664 - MARCH 2013

PIN CONFIGURATION

PIN DESCRIPTIONS

Р	IN		PIN		
NAME	NUMBER	DESCRIPTION	NAME	NUMBER	DESCRIPTION
DVDD	1	Digital supply	INN	15	Signal input, inverting
EF	2	Error flag (out)	INP	14	Signal input, noninverting
GND	12	Ground	VOCM	10	Input, output common-mode voltage
G0	7	Gain option 1 (see Table 1)	VON	8	Inverting signal output
G1	6	Gain option 2 (see Table 1)	VOP	9	Noninverting signal output
G2	5	Gain option 3 (see Table 1)	VSOP	11	Positive supply for output
G3	4	Gain option 4 (see Table 1)	VSN	16	Negative high-voltage supply
G4	3	Gain option 5 (see Table 1)	VSP	13	Positive high-voltage supply

G3:G0	G4 = 0	G4 = 1					
0000	0.125	0.172					
0001	0.25	0.344					
0010	0.5	0.688					
0011	1	1.375					
0100	2	2.75					
0101	4	5.5					
0110	8	11					
0111	16	22					
1000	32	44					
1001	64	88					
1010	128	176					
1011	0.125	0.172					
1100	0.125	0.172					
1101	0.125	0.172					
1110	0.125	0.172					
1111	0.125	0.172					

Table 1. Gain Control

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
PGA281AIPW	PREVIEW	TSSOP	PW	16	90	TBD	Call TI	Call TI	-40 to 125		
PGA281AIPWR	PREVIEW	TSSOP	PW	16	2000	TBD	Call TI	Call TI	-40 to 125		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

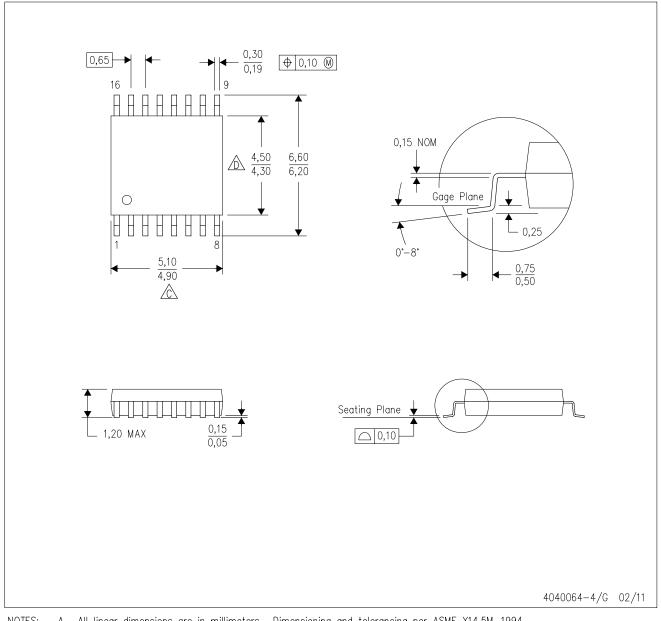
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated